Welcome to Zinc Information



Buckytubes - An Additive For Plastics

The beginning of this story has been told many times. In 1985, a confluence of events led to an unexpected and unplanned experiment with a new kind of microscope resulting in the discovery of a new molecule made purely of carbon – the very element chemists felt there was nothing more to learn about. Buckyballs – sixty carbon atoms arranged in a soccer ball shape – had been discovered and the chemical world, not to mention the physical and material worlds, would never be the same.
A Versatile Filler for Plastics

The mechanical (stiffness, strength, toughness), thermal and electrical properties of pure buckytube materials enable a multitude of applications, from batteries and fuel cells to fibres and cables to pharmaceutics and biomedical materials. Scores of additional applications emerge when one thinks of blending nanotubes with other materials to improve existing properties or to provide new ones. Using nanotubes as fillers in thermoplastics and thermosets, for example, has been discussed for several years, and is only recently undergoing rapid investigation and development as sufficient quantities of high-quality buckytube material is becoming available to enable such investigations.

One of the most important technology developments of the last half of the twentieth century was the substantial replacement of metals with plastics. Most of this replacement has been in structural applications, where plastics have been engineered to outperform steel and other structural metals by providing adequate strength or stiffness at lower weight and cost. A key property that metals will always have over plastics, however, is in electrical conductivity. Plastics are amazingly good electrical insulators; in fact, this property gives rise to many of the most widespread and important uses of plastics. Nevertheless, the applications for plastics would be broadened substantially if good solutions existed to make these materials conductive.
New Applications

These application areas include: antistatic, electrostatic dissipative, and electromagnetic shielding and absorbing materials. Electromagnetic interference and radiofrequency interference (EMI/RFI) shielding, for example, is essential in laptop computers, cell phones, pagers and other portable electronic devices to prevent interference with and from other electronic equipment. At present, there is no suitable plastic material for this purpose, and metal, in one form or another, is typically added to provide this function in electronic equipment cases, imposing substantial weight and manufacturing expense.